Mining Part 2, Mining Colony

Vimeo: https://vimeo.com/324381843

YouTube: https://youtu.be/1MprhkvcIaw

Welcome to Kerbalism! I’m your host, Aubrey Goodman. In this episode, we upgrade a manned surface station into a mining colony.

In our last episode, we landed a construction core on Minmus, ready to expand itself to support higher volume resource processing. Now, it’s time to grow our station into our first mining colony. We need a manned presence to enable ongoing mining operations, extracting resources from the surface.

With asteroids, there is a much smaller opportunity for resources. If the asteroid is only one thousand tons, we spend a lot of energy and time with finite benefit, equal to the mass of the asteroid. We must repeat this for each asteroid we wish to harvest. If the asteroids are small, we may use more resources capturing them than they yield from processing.

Moons are different. Resource abundance on the moon surface is effectively limitless, compared to the cache in the asteroid. Once we’re settled in at a good location, we can produce an arbitrary amount of fuel and send it back to orbit. We’ve chosen Minmus because its surface-to-orbit delta-v is very small. The cost of sending resources from the surface to orbit is much lower than Mun or Kerbin. From the surface of Minmus, we can launch into low planetary orbit for about one third the cost of launching from the planet directly.

The construction core is designed for expansion. The goal is to land the bare minimum mining gear and use it to build the rest on-site. Our station core has both radial and vertical expansion options. After we add processing components, we expand outward with more support struts with the same radial and vertical options. These become new expansion points and we repeat as needed.

Of course, expansion comes with its own challenges. Our first expansion of processing equipment was lost when it overheated and exploded. Fortunately, no other nearby parts were damaged. The expansion plan must include increased solar and thermal management. We also need to leave room for ships to land for refueling. These vessels will not be docking in the traditional sense. They simply land near the station and connect via fuel hose. The hoses are limited in length, so ships will need to land close to the hub and wait for colony crew to attach the hose before fuel transfer can begin. Once attached, the station can transfer stored fuel or make new fuel on-demand, until the ship’s reserves are full. Then, it’s simply a matter of detaching the fuel hose and blasting off to Minmus orbit to rendezvous with an orbital fuel station.

Using this technique, we can deliver fuel within our planetary system to support the needs of any ships traveling between the planet and its moons. As we expand to other planets, we create new mining colonies on moons as needed.

As always, thanks for watching Kerbalism!

Mining Part 1, Construction Core

Vimeo: https://vimeo.com/314334638

YouTube: https://youtu.be/HvigCivcMvg

Welcome to Kerbalism! I’m your host, Aubrey Goodman. In this episode, we build a manned station on the surface of a small moon using a construction core.

In our series on asteroid mining, we used unmanned probes with mining equipment to extract and process resources from nearby asteroids. We converted them into fuel and metal, the raw materials required to expand the capabilities of an orbital construction platform. Now we must accumulate enough rocket parts to begin building our construction core.

The core itself has an empty mass of about 20 tons, so we’ll need at least 20 tons worth of asteroid just to provide the bare minimum mass. In KSP, there is no waste from the refining process. In reality, this would involve a consideration for waste management. For our purposes, we’ll simply define our threshold as double the empty mass to be safe.

Turns out we need more than we had available in our captured asteroid, so we need to capture another one. After a bit of patience, we find a viable target and proceed with intercept. This time, we find one much larger, so it will be sufficient for this mission and hopefully others. Our patience pays off! We’re fortunate to secure a huge rock with over 2500 tons of viable resources.

Now, we ferry ore back and forth between our harvester and our construction platform, while the processing equipment churns the ore into rocket parts. After many ferry trips, we have enough raw materials, and construction begins.

While the core is being built, we change the focus of the ore processing equipment. We must convert enough fuel to enable the core to execute the transfer orbit maneuvers and land safely. The core has just enough fuel reserves to make the entire trip from planetary orbit to landing. Once we land, we will be able to make as much fuel as we want.

Also, we need to identify an ideal landing zone, where resources are abundant. We do this using a resource surveyor in polar orbit around Minmus. The surveyor satellite provides a map of ideal landing locations. We select a viable equatorial candidate and begin the landing sequence.

Our station does not have landing gear. Instead, it has heavy pads for its base, so we need to set it down very gently on a flat surface. We selected a landing zone in a flat equatorial region with sufficient resource abundance to support our needs. In our next episode, we begin to expand the capabilities of our surface station to support fuel harvesting on a larger scale.

Thanks for watching Kerbalism!

Stations Part 2, Lunar Orbit

Vimeo: https://vimeo.com/309137882

YouTube: https://youtu.be/YZj6RmCgXJ8

Welcome to Kerbalism! I’m your host Aubrey Goodman. In this episode, we deploy orbital stations to our moons.

In our quest to explore our solar system, we seek new information to help us make sense of the universe, to expand our understanding of physics. Having a manned station in orbit around a moon helps pave the way toward increased traffic to the moon and acts as a support point for missions to its surface.

Just as we did for planetary stations, we first send an unmanned fuel pod into low lunar orbit. This will help prepare for future missions. Deploying a manned science station at the same altitude but on the opposite side of the orbit helps increase utility. The fuel pod acts as a last ditch option for crafts running critically low on fuel. Having both stations on the same orbit at opposite ends effectively doubles the chance a struggling craft can dock with a station.

Orbital science stations act as a staging point for science missions to the surface. We want to make sure we have docking ports of all sizes on these stations, again to maximize utility. Also, since this station will be supporting other smaller craft, it needs a large cache of fuel, monopropellant, and electricity.

After the station is assembled in planetary orbit, with all its supporting craft docked, we’re ready for transfer orbit. With fuel reserves adequately filled, we plan and execute our lunar transfer maneuvers. This means a prograde maneuver from planetary orbit and a retrograde maneuver to settle into a low circular orbit around the moon.

From here, we can send our unmanned support craft to the surface to explore and gather samples. We can also ferry tourists to the surface for a space selfie. Tourism helps generate revenue to stoke the financial furnace to pay for our science missions.

We’ve spent a considerable amount of resources just to deploy stations to our moons. It’s going to take a lot more funding to build and deploy manned stations to other planets. In our next episode, we send a manned station to Duna, which is a lot like Mars. Don’t miss it!

And thanks for watching Kerbalism!

Satellites Part 2: Lunar Orbit

Vimeo: https://vimeo.com/307753956

YouTube: https://youtu.be/qCvHz1n0qxU

Welcome to Kerbalism. I’m your host, Aubrey Goodman. In this episode, we’ll review the deployment of satellites to lunar orbit.

First, let’s expand to consider the nearest moon. It requires more deltaV to get there, and more still to stabilize in a circular orbit. The good news is our Kerbin orbital satellite is over designed for its task. Its first stage does almost all the work, and we have plenty of fuel left over in the second stage for transfer orbit burns.

Once the craft is in planetary orbit, we need to perform two maneuvers to stabilize into orbit around Mun. If we do a really good job executing the maneuvers, we will settle into a circular orbit.

Orbital transfer between Kerbin and Mun can be done really at any time from a mostly equatorial orbit. This refers to the inclination of the orbital plane relative to the rotation of the body. Kerbin and Mun have very similar inclination, making it convenient to transfer between them. As we’ll find later, Kerbin’s other moon, Minmus, has a different inclination.

While a transfer can be made between Kerbin and Mun at any time, there are optimal points along the orbit where fuel use can be minimized, due to favorable alignment. Sometimes, we can save a huge amount of fuel simply by waiting for 20-30 mins.

Once we find a transfer orbit we like, with a destination periapsis at the desired altitude – that means the periapsis of the resulting orbit around Mun – once we find that periapsis, we can proceed with executing the maneuver at the appropriate time. Even perfect execution will result in slight misalignment with your designed objective. This is expected. If necessary, you can make corrections with RCS, but this is generally not required.

Now, after some time has passed your craft has traversed its path and is now approaching the periapsis of the destination orbit. You must burn retrograde until you slow down enough to stabilize into an elliptical orbit. Then, bring the apoapsis down to around the same altitude as the periapsis, resulting in a circular orbit.

Kerbin has a second moon, called Minmus. Its orbital inclination is about 6 degrees higher than Kerbin, so any craft headed there must also perform a maneuver to align its inclination. This is ideally done during orbital ascent, which reduces the inclination difference.

Our over designed satellite has enough fuel to enter stable orbits of both moons. But it also does very little. As we add capability to our satellite, the payload mass increases, and the first stage fuel requirements increase exponentially.

So that’s it for lunar satellites. In the next episode, we’ll focus on solar satellites; that is, satellites on an orbit similar to a planet. Those will lead us to a place where we will be able to establish a relay network of satellites that allows us to explore a wider part of the solar system. So stay tuned for that and much more!

And thanks for watching Kerbalism!